Welcome to AINest
AINest is your complete solution for building, deploying, and managing AI agents. Our platform provides a seamless environment for your AI applications to thrive.
Enterprise Security
Bank-grade encryption and security measures to protect your agents and data.
Real-time Processing
Execute your agents instantly with millisecond precision and low latency.
Cloud Infrastructure
Reliable and scalable cloud infrastructure that grows with your needs.
Data Management
Efficient data handling with built-in storage and processing capabilities.
Key Features
Intelligent Agent Framework
Our framework provides a robust foundation for building sophisticated AI agents with advanced capabilities:
Multi-Model Support
Integrate with multiple AI models and switch between them seamlessly.
Performance Monitoring
Real-time metrics and insights into your agent's performance.
Persistent Storage
Built-in storage solutions for agent state and data management.
Middleware Pipeline
Extensible middleware system for custom processing logic.
Installation
Get started with AINest in just a few steps. Our SDK supports multiple installation methods.
NPM Installation
npm install ainest-sdk
Basic Setup
import { AINest } from 'ainest-sdk';
// Initialize the SDK
const nest = new AINest({
apiKey: 'your-api-key',
region: 'us-west-2'
});
// Create your first agent
const agent = await nest.createAgent({
name: 'my-first-agent',
model: 'gpt-4',
maxTokens: 1000
});
// Deploy the agent
await agent.deploy();
Environment Variables
Configure your environment with the following variables:
AINEST_API_KEY=your-api-key
AINEST_REGION=us-west-2
AINEST_ENV=production
AINEST_LOG_LEVEL=info
Architecture
AINest follows a modular architecture designed for scalability and flexibility.
Microservices Design
Modular components that can be scaled independently based on demand.
Multi-tenant Storage
Isolated storage systems for enhanced security and performance.
Distributed Computing
Parallel processing capabilities for improved performance.
Security Layer
End-to-end encryption and secure communication channels.
System Components
// Agent configuration structure
{
runtime: {
engine: 'v8',
version: '1.0.0',
options: {
memoryLimit: '2GB',
timeout: 30000
}
},
storage: {
type: 'distributed',
replication: 3,
consistency: 'strong'
},
networking: {
protocol: 'grpc',
maxConcurrency: 1000,
timeout: 5000
},
security: {
encryption: 'aes-256-gcm',
authentication: 'jwt',
rbac: true
}
}
Deployment
Deploy your AI agents to production with our comprehensive deployment options.
Cloud Deployment
Deploy your agents to our managed cloud infrastructure:
// Configure cloud deployment
await agent.deploy({
provider: 'ainest-cloud',
region: 'us-west-2',
resources: {
cpu: '2',
memory: '4Gi',
storage: '100Gi'
},
scaling: {
minReplicas: 2,
maxReplicas: 10,
targetCPUUtilization: 70
},
networking: {
ingressEnabled: true,
loadBalancer: 'application'
}
});
Self-hosted Deployment
Deploy to your own infrastructure using our Kubernetes operator:
# Install AINest operator
kubectl apply -f https://ainest.io/operator.yaml
# Deploy agent using custom resource
apiVersion: ainest.io/v1
kind: AIAgent
metadata:
name: my-agent
spec:
model: gpt-4
replicas: 3
resources:
requests:
cpu: "2"
memory: "4Gi"
limits:
cpu: "4"
memory: "8Gi"
storage:
size: 100Gi
storageClass: standard
monitoring:
prometheus: true
grafana: true
Usage Examples
Conversational Agent
Create an intelligent conversational agent with context awareness:
const chatAgent = await nest.createAgent({
name: 'customer-support',
type: 'conversational',
model: 'gpt-4',
context: {
role: 'customer-support',
knowledgeBase: 'support-docs',
tone: 'professional'
}
});
// Handle user messages
chatAgent.on('message', async (message, context) => {
// Access conversation history
const history = await context.getHistory();
// Generate response
const response = await chatAgent.respond(message, {
temperature: 0.7,
maxTokens: 500
});
// Store interaction
await context.logInteraction({
message,
response,
metadata: {
userId: context.userId,
timestamp: Date.now()
}
});
return response;
});
Task Processing Agent
Create an agent for processing background tasks:
const processingAgent = await nest.createAgent({
name: 'data-processor',
type: 'worker',
schedule: '*/15 * * * *', // Run every 15 minutes
async process(data, context) {
// Process batch of data
const results = await Promise.all(
data.map(async (item) => {
const processed = await processItem(item);
return {
id: item.id,
result: processed,
timestamp: Date.now()
};
})
);
// Store results
await context.storage.saveResults(results);
// Trigger notifications
await context.notify('processing.complete', {
batchId: context.batchId,
itemsProcessed: results.length
});
return results;
}
});
API Integration
Expose your agent through a REST API:
// Create API-enabled agent
const apiAgent = await nest.createAgent({
name: 'api-service',
type: 'service',
endpoints: {
'/analyze': {
method: 'POST',
handler: async (req, context) => {
const { text } = req.body;
const analysis = await analyzeText(text);
return {
result: analysis,
metadata: {
processingTime: context.duration,
modelUsed: context.model
}
};
}
}
},
middleware: [
authenticate,
validateInput,
rateLimit
]
});
// Deploy as API service
await apiAgent.deployService({
port: 3000,
cors: true,
rateLimit: {
windowMs: 15 * 60 * 1000,
max: 100
}
});
Advanced Usage
Custom Behaviors
Implement advanced agent behaviors using our behavior system:
const agent = await nest.createAgent({
name: 'advanced-agent',
behaviors: {
reasoning: {
type: 'chain-of-thought',
steps: ['analyze', 'plan', 'execute'],
maxDepth: 3
},
learning: {
type: 'reinforcement',
model: 'dqn',
parameters: {
learningRate: 0.001,
discountFactor: 0.95
}
},
memory: {
type: 'hierarchical',
storage: {
shortTerm: 'redis',
longTerm: 'postgresql'
}
}
}
});
Custom Middleware
Create custom middleware for advanced processing:
// Input validation middleware
const validateInput = next => async (input, context) => {
const validationResult = await validator.validate(input);
if (!validationResult.valid) {
throw new ValidationError(validationResult.errors);
}
return next(input, context);
};
// Rate limiting middleware
const rateLimit = next => async (input, context) => {
const { userId } = context;
const key = `rate_limit:${userId}`;
const count = await redis.incr(key);
if (count === 1) {
await redis.expire(key, 60); // 1 minute window
}
if (count > 100) {
throw new RateLimitError('Too many requests');
}
return next(input, context);
};
// Apply middleware
agent.use(validateInput);
agent.use(rateLimit);
Advanced Event Handling
Implement sophisticated event handling patterns:
// Set up event handlers
agent.on('processing.start', async (context) => {
// Initialize processing context
await context.initialize();
// Start performance monitoring
const span = tracer.startSpan('agent.processing');
context.setSpan(span);
});
agent.on('processing.complete', async (context, result) => {
// Record metrics
metrics.recordLatency('processing_time', context.duration);
metrics.incrementCounter('processed_items');
// Store results
await context.storage.save(result);
// Clean up
context.getSpan().end();
});
agent.on('error', async (error, context) => {
// Log error details
logger.error('Processing error', {
error: error.message,
context: context.toJSON()
});
// Handle specific error types
if (error instanceof ValidationError) {
await handleValidationError(error, context);
} else if (error instanceof RateLimitError) {
await handleRateLimitError(error, context);
}
// Notify monitoring systems
await alerting.notify('agent.error', {
error,
context,
severity: 'high'
});
});